

Urbane Wasserwiederverwendung

T. Guggenberger

TU Berlin, FG Siedlungswasserwirtschaft, Sekr. TIB 1-B 16 Gustav-Meyer-Allee 25, D - 13355 Berlin Tel.: +49 / (0) 30 / 314 72305

Email: guggenberger@tu-berlin.de

23. März 2023

Einleitung

Wasserwiederverwendung ist die Nutzung von Wasser, das aus behandeltem Abwasser gewonnen wurde und für seinen Verwendungszweck die angemessene/ausreichende Qualität besitzt (unter Berücksichtigung der Gesundheits- und Umweltrisiken und der lokalen und EU-Gesetzgebung)

z.B. wird keine Trinkwasserqualität benötigt um Straßen zu spülen

Einleitung

Ein Drittel des EU-Gebiets leidet unter Wasserarmut.

Wirtschaftliche Verluste durch die Dürreperioden

Die Dürreperioden des Sommers 2017 allein Italien im landwirtschaftlichen Sektor 2 Mrd.

Deutschland

- Nur 2% der landwirtschaftlich genutzten Fläche wird derzeit bewässert
 - Veränderungen durch den Klimawandel (Tendenz steigend)

Einleitung

Auswirkung des Klimawandels auf die Wasserverfügbarkeit – Anpassung an Trockenheit und Dürre in Deutschland

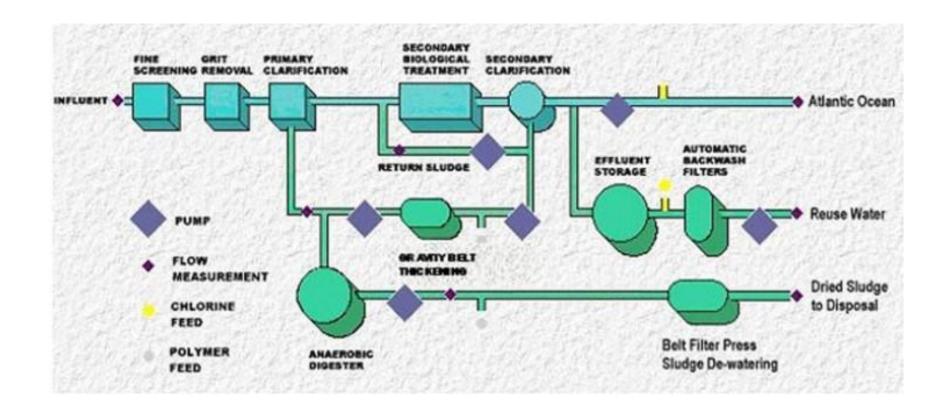
AP4: Leitplanken für die Wasserwiederverwendung zur Bewässerung im urbanen Raum

Potentiale der urbanen Wasserwiederverwendung

Kategorie	Anwendung	Mögliche Probleme
(urban) Landwirtschaftlich	Baumschulen, Gärtnerein und Baumärkte Nutzpflanzen Tiernahrung Saatgut Rasenfarm Waldbau	Pufferzonen nötig, Öffentliche Wahrnehmung, Gesundheitsrisiken (Natur & Mensch), Aerosolkontrolle, Abflusskontrolle
Industrie	Speisewasser für Heizkessel Kühlwasser Reinigung von Geräten Löschwasser Prozesswasser Behandlung von Beton & Staubkontrolle	Korrosion, Biofouling, Aerosole aus Kühltürmen, Überkreuzung mit Trinkwasserversorgung
Nicht-trinkbare Urbane Nutzung	Autowaschanlagen Kühlwasser für Klimaanlagen Brunnenanlagen Straßenreinigung Löschwasser Kanalspülung Toilettenspülung Private Grünanlagen & Kleingärten	Öffentliche Wahrnehmung und Akzeptanz, Geruch, Korrosion, Biofouling, Exposition durch Aerosole,
Umwelt und Erholung	Künstliche Seen oder Teiche Erweiterung bzw. Stützng von natürlichen Gewässern Grünanlagen (-Steifen), Parks, Straßenbäume, Friedhöfe Sportanlagen (z.B. Golf- und Fußballplätze)	Eutrophierung, Gesundheits- & Umweltrisiken, Aquatische Toxizität
Grundwasser	Barriere gegen Salz- & Brackwasser Grundwasseranreicherung	limitierte Einsatzorte bzgl. Brackwasser, Grundwasserverunreinigung, Versalzung
indirekte Trinkwassernutzung	Anreicherung von TW Quellen (Seen, Flüsse, Speicherbecken, GW-leiter)	Öffentliche Wahrnehmung und Akzeptanz, Gesundheitsrisiken

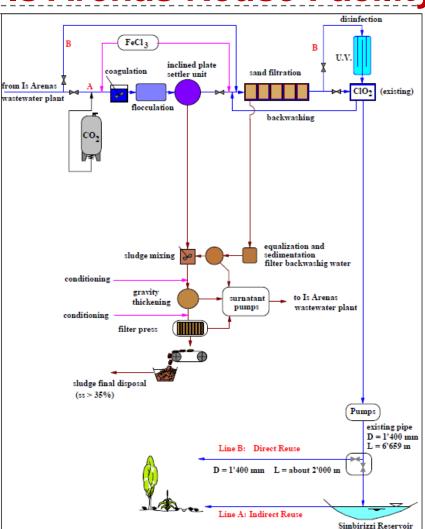
Best Practice Übersicht

	ECLWRF LA, Kalifornien, USA 170.300 m³/d	JZWRP Tianjin, China 60.000 m³/d	HWRF Honolulu, USA 31.500 m³/d	NEWater Factory Singapur 531.000 m³/d	PWWTP Bora Bora, FrauPoly. 50.000 m³/d	SWWTSRS New York, USA 95 m³/d	QHWRP Peking, China 80.000 m³/d	Pekin	HWRP g, China 00 m³/d	NGWRP Windhoek, Namibia 21.000 m³/d
Urban										
Bewässerung	Х	Х	Х		Х	Х	Х	Х	Х	X
künstliche Gewässer		X			Х		Х		Х	
Reinigungszwecke		Х			Х		Х			
Toilettenspülung	Х	Х		Х		Х	Х		Х	
Trinkwasserergänzung										Х
Brandbekämpfung					Х					
Gewerbe & Industrie										
Kühlwasser		Х		Х						
Kühlturmwasser						Х				
Kesselspeisewasser				Х						
Prozesswasser				Х	Х					
Verfahrensstufen	Fä	Fä	МВ	MF/UF	UF	MF	Si	Si	Si	PAK
	FI	MF	FI	UO	Sp	UV-D	UF	MBR	MBR	O-D
	SaF	O-D	SaF	UV-D	CI-D	O-D	O-D	UV-D	UV-D	Fä
		O-Cl	UV-D	Sp		Sp	CI-D	CI-D	uo	DEF
	Sp		Sp				(KT)		CI-D	ZSF
							ST			O-D
										BAK
										GAK
										UF
										CI-D
										Sta


Best Practice Übersicht

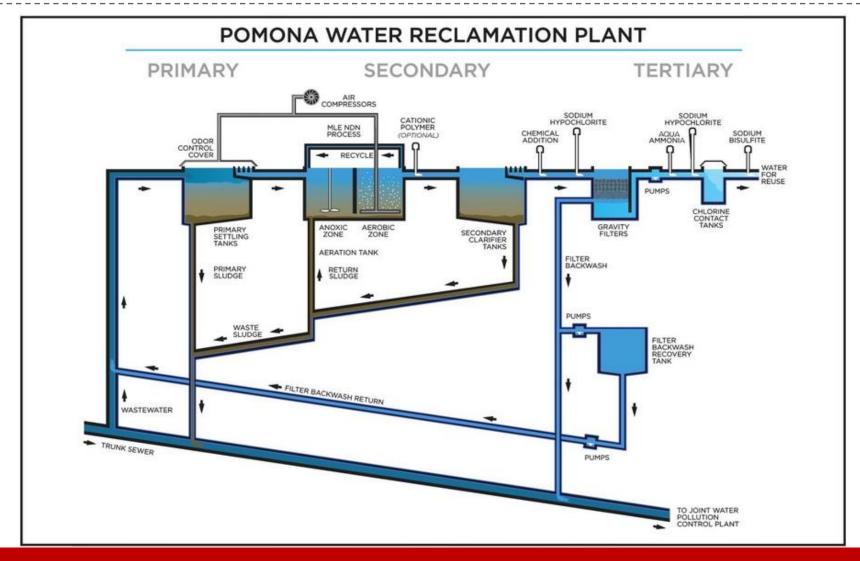
	IRAD Alicante, Spanien 41.600 m³/d	IRAF Caliagri, Italien 95.890 m³/d	IRIS Boca Raton, USA 36.718 m³/d	PWRP Kalifornien, USA 30.238 m³/d	LCWRP Kalifornien, USA 757 m³/d	VWRP Kalifornien, USA 81.164 m³/d	LCOWRP Kalifornien, USA 141.952 m³/d	LBWRP Kalifornien, USA 94.635 m³/d	LAWRP Kalifornien, USA 47.969 m³/d	PDWRP Kalifornien, USA 45.424 m³/d
Urban										
Bewässerung	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
künstliche Gewässer					Х					
Gewerbe & Industrie										
Prozesswasser								Х	Х	
Umwelt										
natürliche Gewässer						Х	X	Х	Х	
Verfahrensstufen	UF	Fä	Sp	CI-D	CI-D	CI-D	CI-D	CI-D	CI-D	МВ
	Sp	FI	CI-D	SaF	Sp	ZSF	SaF	SaF	Sp	TF
		SaF	SaF	CI-D		CI-D	CI-D	CI-D		CL-D
		CI-D								

Best Practice Beispiele: Boca Raton – Project IRIS

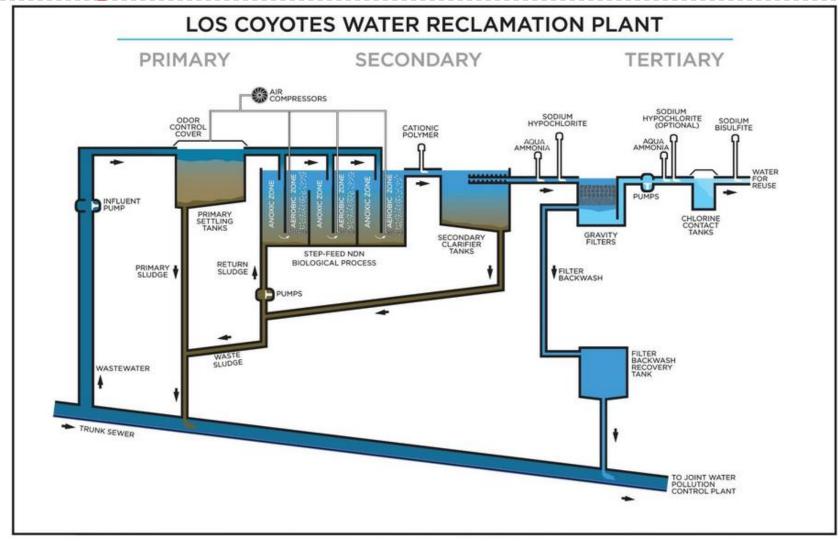

Best Practice Beispiele: Is Arenas Reuse Facility

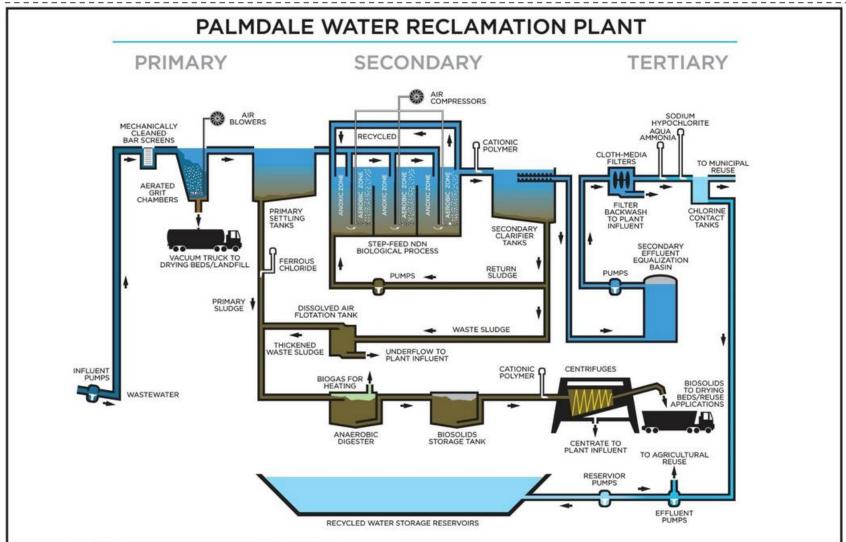
- Baujahr 2002
- > 95.890 m³/d (Reuse)
- Bewässerungswasser (landwirtschaftlich und urban)
- 0,08 €/m³

Best Practice Beispiele: Is Arenas Reuse Facility



[Muntau; 2000]


Best Practice Beispiele: Pamona Water Reclamation Plant


Best Practice Beispiele: Los Coyotes Water Reclamation Plant

Best Practice Beispiele: Palmdale Water Reclamation Plants

Best Practice Beispiele: Erreichte Qualitäten

	IRAD Alicante, Spanien 41.600 m³/d	IRAF Caliagri, Italien 95.890 m³/d	IRIS Boca Raton, USA 36.718 m³/d	PWRP Kalifornien, USA 30.238 m³/d	LCWRP Kalifornien, USA 757 m³/d	VWRP Kalifornien, USA 81.164 m³/d	LCOWRP Kalifornien, USA 141.952 m³/d	LBWRP Kalifornien, USA 94.635 m³/d	LAWRP Kalifornien, USA 47.969 m³/d	PDWRP Kalifornien, USA 45.424 m³/d
Aufbereitungstechnik	Ultrafiltration	Sandfilter	Speicherung	CI-Desinfektion		CI-Desinfektion	CI-Desinfektion	CI-Desinfektion	CI-Desinfektion	Speicherung
		UV-Desinfektion CI-Desinfektion		Sandfilter Cl-Desinfektion				Sandfilter Cl-Desinfektion	Sandfilter Cl-Desinfektion	Tuchfilter Cl-Desinfektion
TOC	k.A.	k.A.	100 - 200	k.A.	k.A.	k.A.	k.A.	k.A.	k.A.	k.A.
CSB	k.A.	k.A.	22,1 - 80	k.A.	181	k.A.	k.A.	k.A.	k.A.	k.A.
BSB5	k.A.	k.A.	k.A.	n.n	n.n	n.n	n.n	n.n	n.n	n.n
Trübung	k.A.	k.A.	2 - 12	0,5	k.A.	0,62	0,8	0,76	0,66	0,88
AFS	k.A.	k.A.	15 - 40	n.n	212	n.n.	n.n.	n.n.	n.n.	n.n.
N	k.A.	k.A.	15 - 40	<12	36	<8	<9	<11	<6	<5
Р	k.A.	k.A.	k.A.	<0,3	k.A.	0,8	0,3	0,5	k.A.	k.A.
E.Coli [kbe/100ml]	k.A.	k.A.	k.A.	n.n	n.n	n.n.	n.n.	n.n.	n.n.	n.n.
Grenzwerte eingehalten in	k.A.	k.A.	-	Zy, Fr, Gr*, It, Po, Sp, EU, EPA	-	Zy, Fr, Gr*, It, Po, Sp, EU, EPA	Zy, Fr, Gr*, It, Po, Sp, EU, EPA	Zy, Fr, Gr*, It, Po, Sp, EU, EPA	Zy, Fr, Gr*, It, Po, Sp, EU, EPA	Zy, Fr, Gr*, lt, Po, Sp, EU, EPA

Fazit

- Urbane Wiederverwendung findet seit Dekaden stabil, erfolgreich und sicher statt
 - Z.B. seit über 40 Jahren keine Krankheiten in den USA auf Wiederverwendung zurückführbar
 - Alleine in LA 4.255 Ha urbaner Bewässerung mit ca. 59 mio. m³/d
- Drei-stufigen Klärprozess mit anschließender Desinfektion und Sandfiltration ausreichend um Grenzwerte einzuhalten
 - Wenn Werte verfehlt wurden, lag das an der unzureichenden Biologischen Stufe
 - Erweiterung ja nach Abwasserquelle sinnvoll:
 - Oxidation, Aktivkohle, Membranverfahren
- Zum Schutz der Gesundheit und Umweltkompartimente ist ein engmaschiges Beprobungsregime notwendig
 - Stichwort: Pathogene (Viren), Persistente org. Verbindungen, Salze,
 Spurenstoffe

Fazit

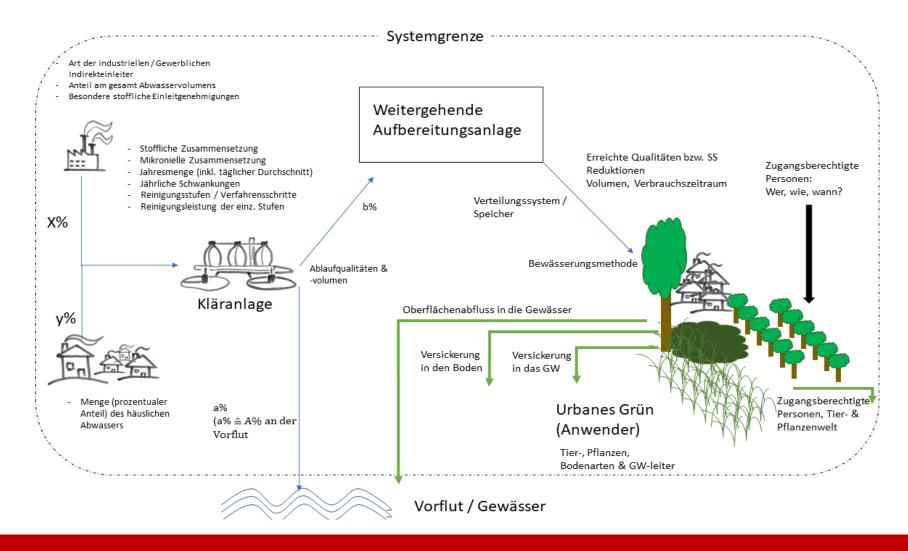
- Großes Synergiepotenzial mit 4. Reinigungsstufe
 - Ozonung + Bio. Filter + Desinfektion
 - (Ozonung) + GAK + Desinfektion
 - (Ozonung) + PAK + Filtration + Desinfektion
- Momentan 46 Anlagen in Deutschland in Betrieb + 90 im Bau

O ₃	GAK	PAK	O ₃ + GAK	O ₃ + PAK
10	11	21	2	2

Noch unabhängig von der KA-Ausbaugröße

Ausbaugröße [EW]	≤ 10.000	10.000 - ≤ 20.000	20.000 - ≤ 50.000	50.000 - ≤ 100.000	100.000 - ≤ 500.000	>500.000
Anzahl	5	4	12	12	10	3

 Nach EU-Kommunalabwasserrichtlinie Aufrüstung aller KA > 100.000 EW bis 2035 & Aller KA 10.000 – 100.000 EW bis 31.12.2040



- Nach EU Verordnung 2020/471, vorgeschrieben:
- "Zum Risikomanagement gehört die proaktive Risikoermittlung und -bewältigung, damit gewährleistet ist, dass aufbereitetes Wasser sicher genutzt und bewirtschaftet wird und keine Gefahr für die Umwelt oder die Gesundheit von Menschen und Tier besteht"
- Besteht aus fünf Kern- und sechs unterstützenden Elementen

- Beschreibung des Gesamten
 Wasserwiederverwendungssystems
 - Von der Quelle, über die Aufbereitung, den Transport, die Speicherung bis zur Verwendung am Einsatzort
 - Detaillierte Beschreibung der Verfahrensstufen bzw. eingesetzten Techniken, deren Reinigungsleistungen
 - Beschreibung der beabsichtigten Verwendung und des Einsatzortes
 - Wassermengen und Verbrauchszeiträume
 - Bewässerungsmethoden

- 2. Ermittlung aller am Wasserwiederverwendungssystem beteiligten Parteien und klare Beschreibung ihrer Aufgaben und Zuständigkeiten
 - Quelle des Klarwassers
 - Aufbereiter des Klarwassers
 - Verteiler des Recyclingwassers
 - Bereitsteller des Recyclingwassers
 - Verbraucher
 - Koordination aller Akteure, Absprachen, Meldeketten, Einhaltung & Kontrolle der Wasserqualität, Benennung des Hauptverantwortlichen (i.d.R. Klarwasser Aufbereiter)

- 3. Ermittlung von Gefahren, insbesondere das Vorhandensein von Schadstoffen und deren Gefahrenpotentials
 - Pathogene: Helminthen, Bakterien, Protozone oder Viren
 - Chemische Schadstoffe: Salze und ihre Ionen, Nährstoffe, Schwermetalle, Spurenstoffe und Organik

Potentielle Gefahren der urbanen Wiederverwendung

- Pathogene führen meist nur bei oraler Aufnahme zur Erkrankung
 - Geringere Gefahr als in der Landwirtschaft, da kein Verzehr. Jedoch höhere Kontaktwahrscheinlichkeit
 - Schleimhautkontakt und Aerosole nicht zu vernachlässigen!
 - Unterschiedliche Erreger → Hygiene-Indikatoren (z.B. E.Coli)
 - Europaweit uneinheitliche Regelungen
 - Abhängig auch vom Einsatzort und der Bewässerungsmethode
 - Ziel: Pathogenkonzentration die keine gesundheitliche Beeinträchtigung nach sich zieht
- Sind für die Umweltkompartimente eher Gefahrlos

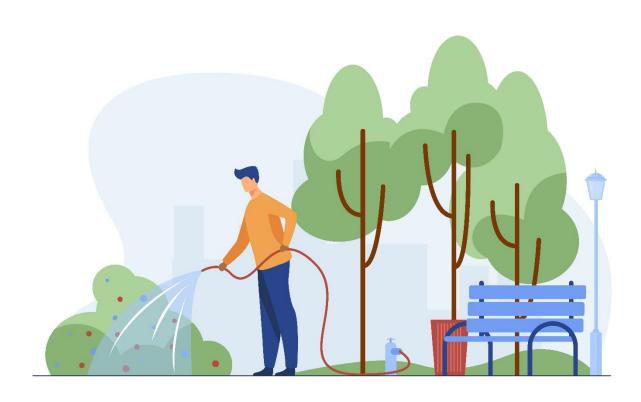
Potentielle Gefahren der urbanen Wiederverwendung

- Chemische Schadstoffe sind i.d.R. Belastend für die Umweltkompartimente (Boden, Natur, Gewässer)
 - Salze = Bodenstruktur (Verschlammung / Verkrustung);
 pflanzenschädigend
 - Organische Inhaltsstoffe = Eutrophierung; Kolmation
 - Nährstoffe = Dünger; Eutrophierung
 - Schwermetalle = z.T. ökotoxischen Einfluss auf die Umwelt
 - Keine akute Gefahr, jedoch kann es bei der Bewässerung zu Akkumulation in Boden, Grundwasser und Gewässer kommen
 - Boden muss regelmäßig kontrolliert werden
 - Spurenstoffe = werden momentan nicht entfernt und gelangen bei der Bewässerung so in die Umwelt
 - keine Rechtsvorschriften!! Nur Umweltqualitätsnormen und
 10 Stoffe in der Neuen EU-Abwasserverordnung

4. Identifizierung der gefährdeten Umweltgegebenheiten und Bevölkerungsgruppen und der Expositionswege unter Berücksichtigung spezifischer Umweltfaktoren wie örtliche Hydrogeologie, Topologie, Bodenart, Ökologie, Praktiken der Landschaftspflege und Bewässerungsmethoden

Bev. Gruppe	Expositionsweg	Umwelt	Expositionsweg / Einfluss
Arbeiter (Aufbereitung & Grünfläche)	Haut Kontakt, Inhalation & unbeabsichtigtes verschlucken	Boden	Versickerung: Versäuerung, Versalzung, Verschlammung, Belastung
Besucher ("Mutter,	Haut Kontakt, Inhalation	Tiere	Vergiftung
Vater, Kind, Oma, Opa")*	& unbeabsichtigtes verschlucken	Pflanzenwelt	Versalzung, Akkumulation
Anwohner & "Querende" Haut Kontakt, Inhalation & unbeabsichtigtes verschlucken		Grundwasser	Infiltration: Adsorptions- /Desorptionsprozesse führen zu Auswaschung & biologischer Abbau
* Spielende, Sonnende, S Picknickende, FKKler; Ru Redenhaltende	-	Oberflächenwasser	Oberflächenabfluss

- 5. Durchführung einer Bewertung der Umweltrisiken und der Risiken für die Gesundheit von Mensch und Tier
 - Abschließende Risikobewertung auf Grundlage der vorher zusammengetragenen Gefahren(-arten), Risiken und potentiell beeinträchtigten Schutzgüter
 - In Abhängigkeit der Datengrundlage:
 - groß/ gut = Quantitative Risikobewertung
 - klein/ schlecht = Qualitative bzw. semi-Quantitative
 Risikobewertung


Lesson Learnt – Zusammenfassung

- Wasserwiederverwendung wird weltweit sicher praktiziert
 - Filtration u. Desinfektion kombiniert mit engmaschigen Untersuchungsprogrammen in Abhängigkeit der Abwasserzusammensetzung sind Notwendig
 - Synergien mit 4. Reinigungsstufe möglich
- Rechtliche Fragen z.T. noch unklar in Deutschland
 - Pathogen -> reichen E.Coli aus? Welche Surogat Parameter wählen? Wie verhalten sie sich auf Belebten Oberflächen?
 - Spurenstoffproblematik? Ungeregelt für das Abwassergeregelt für die Wiederverwendung?

Vielen Dank für Ihre Aufmerksamkeit

[Freepik 2022]

Quellen

[DWA, 2019] Cornel, Peter; Drewes, Jörg; et.al.: Non-Potable Water Reuse – Development, Technologies and international Framework for Agriculture, Urban and Industrial Uses. Hennef, 2019.

[Freepik, 2022] Bild von pch.vector auf Freepik

[Muntau, 2000] H. Muntau, S. Vacca, A. Virdis, et. Al.: «THE APPLICATION OF ALTERNATIVE TECHNIQUES FOR THE RECOVERY OF WATER FROM EFFLUENTS FOR REUSE". Ispra, Italy, 2000.

[Schwaller, 2022] Schwaller, C.: "Risikomanagementansätze im BMBF-Projekt Nutzwasser". Vortrag zum 49. Abwassertechnischen Seminar (ATS) in "Berichte aus der Siedlungswasserwirtschaft Nr. 223. TU München, 2022.

[Tiergarten, 2021] Leonhard Lenz, public picture:

https://commons.wikimedia.org/wiki/File:Watering_in_Gro%C3%9Fer_Tiergarten_Berlin_2021-06-29_32.jpg; Zugriff 24.05.2022

[WHO, 2016] Aradhya, M.; Bahri, A.; Barrenberg, E.; et. al: "Sanitation safety planning: manual for safe use and disposal of wastewater, greywater and excreta". WHO, Genf, 2016.